Quaternion Algebras, Arithmetic Kleinian Groups and Z-lattices

نویسندگان

  • Donald G. James
  • DONALD G. JAMES
چکیده

Let K be a quadratic extension of Q, B a quaternion algebra over Q and A = B ⊗Q K. Let O be a maximal order in A extending an order in B. The projective norm one group PO1 is shown to be isomorphic to the spinorial kernel group O′(L), for an explicitly determined quadratic Z-lattice L of rank four, in several general situations. In other cases, only the local structures of O and L are given at each prime. Both definite and indefinite lattices are covered. Some results for quadratic global field extensions K/F and maximal S-orders are given. There is a description of the F -quaternion subalgebras of A, and also of their norm one groups as stabilizer subgroups and as unitary groups. Conjugacy classes of the Fuchsian subgroups of PO1 corresponding to stabilizer subgroups are studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Non-Existence of Torsion in Maximal Arithmetic Fuchsian Groups

In [1], Borel discussed discrete arithmetic groups arising from quaternion algebras over number fields with particular reference to arithmetic Kleinian and arithmetic Fuchsian groups. In these cases, he described, in each commensurability class, a class of groups which contains all maximal groups. Developing results on embedding commutative orders of the defining number field into maximal or Ei...

متن کامل

Invariant Trace-fields and Quaternion Algebras of Polyhedral Groups

Let P be a polyhedron in H$ of finite volume such that the group Γ(P) generated by reflections in the faces of P is a discrete subgroup of IsomH$. Let Γ+(P) denote the subgroup of index 2 consisting entirely of orientation-preserving isometries so that Γ+(P) is a Kleinian group of finite covolume. Γ+(P) is called a polyhedral group. As discussed in [12] and [13] for example (see §2 below), asso...

متن کامل

Group Algebras of Kleinian Type and Groups of Units

The algebras of Kleinian type are finite dimensional semisimple rational algebras A such that the group of units of an order in A is commensurable with a direct product of Kleinian groups. We classify the Schur algebras of Kleinian type and the group algebras of Kleinian type. As an application, we characterize the group rings RG, with R an order in a number field and G a finite group, such tha...

متن کامل

Genera of Arithmetic Fuchsian Groups

Introduction. The fundamental invariant of a Riemann surface is its genus. In this paper, using arithmetical means, we calculate the genus of certain Riemann surfaces defined by unit groups in quaternion algebras. First we recall a well-known general construction of Riemann surfaces. The group SL2(R) acts on the upper half-plane H by Möbius transformations. If G is a Fuchsian group, that is, a ...

متن کامل

Computing arithmetic Kleinian groups

Arithmetic Kleinian groups are arithmetic lattices in PSL2(C). We present an algorithm that, given such a group Γ, returns a fundamental domain and a finite presentation for Γ with a computable isomorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002